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Abstract 1 

How useful are satellite-based rainfall estimates (SRFE) as forcing data for hydrological 2 

applications? Which SRFE should be favoured for hydrological modelling? What could 3 

researchers do to increase the performance of SRFE-driven hydrological simulations? To address 4 

these three research questions, four SRFE (CMORPH, RFE 2.0, TRMM-3B42 and PERSIANN) 5 

and one reanalysis product (ERA-Interim) are evaluated within a hydrological application for the 6 

time period 2003-2008, over two river basins (Volta and Baro-Akobo) which hold distinct 7 

physiographic, climatologic and hydrologic conditions. The focus was on the assessment of: a) 8 

the individual and combined effect of SRFE-specific calibration and bias correction on the 9 

hydrological performance, b) the level of complexity required regarding bias correction and 10 

interpolation to achieve a good hydrological performance, and c) the hydrological performance of 11 

SRFE during high- and low-flow conditions. Results show that 1) the hydrological performance is 12 

always higher if the model is calibrated to the respective SRFE rather than to interpolated ground 13 

observations; 2) for SRFE that are afflicted with bias, a bias-correction step prior to SRFE-14 

specific calibration is essential, while for SRFE with good intrinsic data quality applying only a 15 

SRFE-specific model calibration is sufficient; 3) the more sophisticated bias-correction method 16 

used in this work (histogram equalization) results generally in a superior hydrological 17 

performance, while a more sophisticated spatial interpolation method (Kriging with External 18 

Drift) seems to be of added value only over mountainous regions; 4) the bias correction is not 19 

over-proportionally important over mountainous catchments, as it solely depends on where the 20 

SRFE show high biases (e.g. for PERSIANN and CMORPH over lowland areas); and 5) the 21 

hydrological performance during high-flow conditions is superior thus promoting the use of 22 

SRFE for applications focusing on the high-end flow spectrum. These results complement a 23 

preliminary “ground truthing” phase and provide insight on the usefulness of SRFE for 24 



 3 

hydrological modelling and under which conditions they can be used with a given level of 1 

reliability. 2 

Keywords: satellite-based rainfall estimates; SRFE; hydrological modeling; hydrological 3 

evaluation; bias correction; Upper Nile 4 

 5 

1. Introduction 6 

Hydrological models facilitate worldwide the efficient management of one of the most valuable 7 

natural resources: water. A plethora of hydrological applications have been developed aiming at 8 

quantifying each (terrestrial) component of the water cycle for past, present and future conditions 9 

(see, e.g. (Döll et al., 2003; Silberstein, 2006). Results from these models are used to, for 10 

example, issue flood warnings (e.g. (Cloke and Pappenberger, 2009), estimate drinking water 11 

availability (e.g. (Soboll et al., 2011), determine ecological flows required to maintain a healthy 12 

environment (e.g. (Dyson et al., 2008)), or to optimise water allocation schemes (e.g. (de 13 

Condappa et al., 2009)). The reliability and accuracy of these applications is therefore essential 14 

for decision-making and usually entails some sort of economic, social and environmental benefits 15 

and costs. 16 

 17 

Precipitation data is the most crucial atmospheric driver for hydrological modelling as it 18 

influences the accuracy of these applications to a large extent. In this context, the global decline 19 

of rain gauge networks proves to be disadvantageous (Hughes, 2006). This has led researchers to 20 

consider the use of satellite-derived rainfall estimates (SRFE) instead. With a suitable spatio-21 

temporal resolution (e.g. 0.25° and 24 h), and being released uninterrupted and in near real-time, 22 

publically available, and easily accessible, most SRFE hold a large potential as forcing data for 23 

medium- to large-scale hydrological modelling, especially for data-sparse and ungauged basins.  24 
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 1 

However, SRFE are subjected to a variety of potential errors, which originate from e.g. 2 

discontinuous revisit time of observing sensors and weak relationships between remotely sensed 3 

signal and rainfall rate (Bitew and Gebremichael, 2011). In this regard, a commonly experienced 4 

flaw of SRFE is the bias. The presence of bias in precipitation estimates is unfavourable for water 5 

balance calculations as the total water quantity is preserved within the hydrological model. 6 

Therefore, the questions at stake are: 1) How useful are these SRFE as forcing data for 7 

hydrological modelling? 2) Which SRFE should be favoured for hydrological modelling? 3) What 8 

could researchers do to increase the performance of SRFE-driven hydrological simulations? 9 

Answering these questions would allow us to provide insight about the appropriateness of using 10 

SRFE for hydrological applications. To ensure a justified usage of SRFE as input to hydrological 11 

models, however, a thorough validation is required.  12 

 13 

There are two methods for validating SRFE: either through ground truthing, or through model-14 

based applications. The first method refers to the traditional approach comparing SRFE against 15 

ground observed precipitation. This approach has been applied extensively, resulting into a 16 

comprehensive literature (here relevant for Africa only: (Adler et al., 2003; Ali et al., 2005; 17 

Asadullah et al., 2008; Dinku et al., 2010; Dinku et al., 2007; Diro et al., 2009; Hughes, 2006; 18 

Laurent et al., 1998; McCollum et al., 2000; Nicholson et al., 2003; Symeonakis et al., 2009; 19 

Thorne et al., 2001; Xie and Arkin, 1995)). The second approach refers to the evaluation of SRFE 20 

by assessing their performance within a target application. An example of this approach is the 21 

evaluation of SRFE based on their capabilities to reproduce the observed streamflow, also 22 

referred to as “hydrological evaluation”. This method is rather recent but continues to gain 23 

popularity amongst researchers (see e.g. (Artan et al., 2007; Behrangi et al., 2011; Bitew and 24 

Gebremichael, 2011; Gourley et al., 2011; Jiang et al., 2012)). Even though both methods can be 25 

independently applied, they can be considered as complementary: the first one provides insight 26 
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into the intrinsic data quality of the SRFE, whereas the second one assesses the usefulness of the 1 

SRFE within a certain application.  2 

 3 

However, the abovementioned studies on the hydrological evaluation of SRFE, a) validated either 4 

a single SRFE over a wider area or multiple SRFE over a single target area; b) used traditional 5 

performance indicators such as the Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1974), bias 6 

(absolute, relative, normalised or fractional), Root Mean Square Error (RMSE, standard or 7 

normalised), Mean Absolute Error (MAE) or coefficient of determination (R²); c) examined the 8 

improvement in hydrological performance by calibrating the model with the respective SRFE 9 

rather than with rain gauge data; and d) mostly obviated a step to correct for biases in the 10 

precipitation estimates or applied a rather simple bias-correction technique. 11 

 12 

This study provides an innovative perspective on the hydrological evaluation of SRFE for five 13 

reasons. First, we evaluate multiple SRFE over multiple physiographic and climatic conditions. 14 

Second, we assess the individual and combined effect of SRFE-specific model calibration and 15 

bias correction on the hydrological performance. Third, we make use of state-of-the-art 16 

calibration algorithms and a novel model performance indicator. Fourth, we test two different 17 

bias-correction methods to find the optimal way of compensating the bias of SRFE in data-sparse 18 

regions. Fifth, by combining detailed knowledge on the intrinsic data quality obtained during the 19 

ground truthing phase (Thiemig et al., 2012) with the results of this current study, we gain the 20 

unique opportunity to differentiate among potential impacts arising from the input data, the 21 

hydrological model and from the physiographic and climatic conditions on hydrological 22 

simulations in Africa.  23 

 24 

In this study, we focus on the hydrological evaluation of four SRFE, namely, CMORPH, RFE 25 

2.0, TRMM-3B42 and PERSIANN and one reanalysis product called ERA-Interim. These 26 
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products are validated over two African basins (Volta and Baro-Akobo), which hold distinct 1 

physiographic and climatic conditions. For the hydrological assessment we use LISFLOOD (Van 2 

Der Knijff et al., 2010), a physically-based hydrological model, which has been calibrated using 3 

the Particle Swarm Optimisation (PSO) algorithm (Kennedy and Eberhart, 1995) for the time 4 

period 2003-2006. Additionally, we implement two different bias-correction methods to correct 5 

the bias in the SRFE: factor correction (FC) and histogram equalization (HE), in combination 6 

with two spatial interpolation methods, Inverse Distance Weighted (IDW) and Kriging with 7 

External Drift (KED) to define the observed targets for bias correction.  8 

 9 

This study intends to answer the three aforementioned questions by focussing on: a) the impact of 10 

SRFE-specific model calibration and bias correction on the hydrological performance; b) 11 

regarding bias correction and spatial interpolation, the level of complexity of the method required 12 

to achieve an acceptable hydrological performance, and c) the usefulness of SRFE for specific 13 

flow conditions (high-flow and low-flow). Our results will help to elucidate the limits of 14 

predictability when using SRFE as input for hydrological modelling. The ultimate goal of this 15 

study is to provide insight on the usefulness of SRFE for hydrological modelling and to select the 16 

“best” way of increasing the hydrological performance given the limitations of each SRFE. 17 

 18 

The remainder of the article is organised as follows: Section 2 describes the study areas and 19 

precipitation data. Section 3 presents the workflow, the hydrological modelling framework 20 

including details on LISFLOOD, the calibration algorithm, bias-correction methods and the 21 

performance indicator. Results are presented in Section 4, while discussion and concluding 22 

remarks are rounded off in Section 5 including among other things the answers to the research 23 

questions as well as recommendations for SRFE end-users. 24 
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2. Data 1 

2.1. Study Areas 2 

The hydrological evaluation of SRFE was done over the three upper catchments of the Volta 3 

River Basin, namely, Black Volta, White Volta and Oti, and the Upper Baro-Akobo catchment, 4 

which is part of the Nile River Basin. The study area including the delineation of sub-catchments 5 

and the location of meteorological and hydrological stations is shown in Figure 1.  6 

 7 

The two basins differ from each other with respect to physiographic and climatic conditions as 8 

well as the hydrological responses. While the Volta is a medium- to large-size lowland basin, 9 

located in the tropical wet and dry zone, with a rather short but pronounced flood period from 10 

mid-July to the end of October with inter-annual variable flood peaks exceeding 2500 m³/s, the 11 

Baro-Akobo is a small- to medium-size mountainous basin, with a typical highland climate and a 12 

prolonged flood period from June to November with flood peaks of only around 1200 m³/s. 13 

Further details on topography and climate are presented in Table 1, while hydrological 14 

information is depicted in Figure 2. 15 

(insert Figure 1 here) 16 

(insert Table 1 here) 17 

(insert Figure 2 here) 18 

2.2. Precipitation data 19 

2.2.1. Ground observations 20 

Information regarding the number of meteorological ground stations, station density, data 21 

coverage and data provider can be obtained for each river basin from Table 1 (see Figure 1 for 22 

location of the stations). We consider this data set as representative since it is the most complete, 23 

accurate and independent information at hand, taking into consideration the general data 24 
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availability, the quality checks done by the data provider and the fact that 79% of these 1 

observations are not part of the publically available GTS-station data, but data from national 2 

institution without public domain and hence are not input to any SRFE (explicitly TRMM-3B42 3 

or RFE 2.0), respectively. 4 

 5 

To be able to use point precipitation as forcing data to the hydrological model as well as to assess 6 

the relevance of the spatial interpolation method for bias correction (see Sections 3.2.3 and 4.3), 7 

point precipitation was interpolated to areal (raster) precipitation using two methods: Kriging 8 

with External Drift, and Inverse Distance Weighted (Burrough and McDonnell, 1998; Goovaerts, 9 

2000). For KED interpolations we used high-resolution terrain elevation data (SRTM; Shuttle 10 

Radar Topography Mission) provided by NASA as a secondary variable (referred to as external 11 

drift) to define a trend to guide the estimation of the primary variable at each grid cell to improve 12 

the performance of the spatial interpolation of point precipitation. The interpolation was executed 13 

on a daily time step for the 6-year time period (2001-2006). The whole process was automated by 14 

using the hydroTSM R package (Zambrano-Bigiarini, 2011). The spatial resolution was set to 15 

0.1° x 0.1° for both approaches.  16 

 17 

The average annual KED and IDW precipitation fields are shown for both basins in the first and 18 

second column of Figure 3 respectively. The KED precipitation field shows for the Volta Basin 19 

an increasing gradient from the dry north (600 mm) to the wet south (1600 mm), ending in an 20 

abrupt reduction in precipitation (1000 mm) at the coastal zone, while the IDW precipitation field 21 

shows a rather homogeneous distribution ranging over the whole basin between 800 and 1000 22 

mm. For the Baro-Akobo, both precipitation fields show an increasing precipitation gradient from 23 

the river mouth in the west to the highlands in the north and southeast; for the KED field this 24 

gradient ranges from 1400 mm to up to 2600 mm, while it ranges between 1500 mm and 1950 25 
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mm for the IDW field. The KED precipitation patterns are for both basins in full agreement with 1 

values reported by (Shahin, 2002) and (Romilly and Gebremichael, 2011), respectively. 2 

2.2.2. Satellite-Based Rainfall Estimates 3 

There are three main data sources for SRFE: geostationary thermal infrared (TIR), passive 4 

microwave (PMW), and rain gauges. Each of these data sources holds its particular strengths and 5 

limitations. For example, TIR data have a unique temporal and spatial coverage, sensing almost 6 

the whole globe every one hour or less. TIR information, i.e. the cloud top brightness 7 

temperature, is particularly valuable for the distinction between raining and non-raining, however 8 

they are rather poor in the estimation of the actual precipitation amount since the sensor signal 9 

does not penetrate through the clouds. PMW, on the contrary, proves better in estimating the 10 

precipitation amount due to the more direct physical relationship between sensor signal and 11 

precipitation, but runs on a much lower temporal frequency and on a coarser spatial resolution. 12 

Lastly, rain gauge data provide the most direct information about precipitation at surface level, 13 

but only for certain point locations and are not spatially inclusive and comprehensive. The 14 

concept of SRFE is to combine the favourable characteristics of the different data sources using 15 

various merging strategies, to achieve accurate precipitation estimates at surface level with a high 16 

spatial and temporal resolution.  17 

 18 

The SRFE evaluated in this study were selected based on a number of characteristics such as: a) 19 

whole coverage over Africa, b) good temporal and spatial resolution (min. ≤ 24h and ≤ 0.25°), c) 20 

preferentially near real-time availability, and d) public domain availability. Additionally, we 21 

excluded SRFE that showed a poor intrinsic data quality during the ground truthing phase 22 

(Thiemig et al., 2012) and included the re-analysis product ERA-Interim for the sake of its 23 

underlying numerical weather prediction model, which is very similar to the one used to calculate 24 
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the ECMWF-EPS. ERA-Interim and ECMWF-EPS will become of great importance in our future 1 

analysis of flood predictions and therefore we included ERA-Interim into the current analysis. 2 

 3 

Table 2 provides details on the selected SRFE and re-analysis product (ERA-Interim), including 4 

spatio-temporal coverage and resolution, product data sources, merging techniques as well as the 5 

main outcome of the ground truthing phase over the respective study area. The average annual 6 

precipitation between 2003 and 2006 is shown in Figure 3, which gives a good indication on the 7 

accuracy of the SRFE to reproduce the spatial precipitation pattern. For more information 8 

regarding the nature of the SRFE the reader is referred to the additional references indicated in 9 

Table 2.  10 

(insert Table 2 here) 11 

(insert Figure 3 here) 12 

 13 

3. Method: Hydrological evaluation 14 

3.1. Workflow 15 

To answer the research questions we focused on the three focal points as stated in Section 1 by 16 

following the workflow depicted in Figure 4.  17 

 18 

In order to assess the effect of SRFE-specific calibration and/or bias-correction, a reference 19 

performance for each SRFE needed to be defined. Therefore, LISFLOOD was calibrated for each 20 

catchment using the interpolated observed precipitation fields obtained using KED (Step 1). It has 21 

been decided to use the KED fields as these resemble the observed precipitation pattern reported 22 

by (Shahin, 2002) and (Romilly and Gebremichael, 2011) the closest. The resulting calibrated 23 

(optimised) parameter set is referred to as the “base-line parameterisation” (BLP). In Step 2, each 24 

SRFE is run with the model set-up of Step 1 (BLP) resulting into the reference performance for 25 
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each SRFE presented in Section 4.1. Once the reference performance has been calculated, the 1 

influence of SRFE-specific calibration and bias correction is assessed in Steps 3 and 4 2 

respectively. In Step 3, LISFLOOD is re-calibrated for each SRFE and each sub-catchment, 3 

resulting into 20 model calibrations (5 SRFE x 4 sub-catchments), to investigate the impact of 4 

calibrating the hydrological model for each SRFE, without any bias correction. In Step 4, 5 

LISFLOOD is run for each sub-catchment, with each version of bias-corrected SRFE individually 6 

using the parameter set of Step 1 (60 model runs; 5 SRFE x 3 BC methods x 4 sub-catchments). 7 

Finally, the combined effect of SRFE-specific calibration and bias correction is assessed in Step 8 

5, by recalibrating each model setting of Step 4 (60 model calibrations).  9 

 10 

The results of Steps 3 to 5 (see Section 4.2) show the individual and combined effect of SRFE-11 

specific calibration and bias correction on the hydrological performance. The most convenient 12 

bias-correction approach is discussed in Section 4.3 through a detailed analysis of Step 4. The 13 

usefulness of SRFE for different flow conditions is investigated in Section 4.4 based on a separate 14 

consideration of low- and high-flow conditions of the hydrological simulations of Step 5 (only 15 

HE-KED). Finally, the validation of the hydrological performance is done for each individual 16 

SRFE using the same model settings as of Step 5 (only HE-KED) in Section 4.5. 17 

(insert Figure 4 here) 18 

3.2. Hydrological Modelling Framework 19 

3.2.1. LISFLOOD model 20 

LISFLOOD is a fully-distributed and physically-based hydrological model developed for flood 21 

forecasting and impact assessment studies. This model simulates the spatial and temporal patterns 22 

of catchment responses in large river basins as a function of spatial information on topography, 23 

soils and land cover. LISFLOOD is a versatile GIS-based hydrological model used for large-scale 24 
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assessment of water resources (floods or droughts), flood warnings (European Flood Awareness 1 

System, www.efas.eu) and climate change impacts. Within this frame the model has been tested 2 

exhaustively all over Europe (the whole list of publications is found on 3 

http://floods.jrc.ec.europa.eu/publications/floods-a-climate-change) and recently also over various 4 

parts in Africa (Thiemig et al., 2010). A complete description of the model structure and 5 

equations is available in (Van Der Knijff et al., 2010). 6 

 7 

The hydrological model was set up for the two study areas with a spatial resolution of 0.1°. GIS-8 

based model parameters were either extracted or derived from multiple data sources such as the 9 

Harmonized World Soil Database 1.0, the VGT4AFRICA project or the SRTM. Meteorological 10 

variables (except precipitation) were obtained from the ERA-Interim fields, while parameters 11 

related to the groundwater response, infiltration, groundwater losses and channel routing were 12 

determined through model calibration. 13 

3.2.2.  Model Calibration 14 

LISFLOOD has been calibrated based on a 4-year period (2003-2006, using 2002 as warm-up) 15 

for each individual sub-catchment using raw and bias-corrected SRFE, respectively. Calibration 16 

was done using the hydroPSO R package (Zambrano-Bigiarini and Rojas, 2012), which 17 

implements a state-of-the-art Particle Swarm Optimisation (PSO) algorithm to carry out a global 18 

parameter optimisation. 19 

 20 

PSO is an evolutionary optimisation algorithm originally developed by (Kennedy and Eberhart, 21 

1995). In PSO each individual of the population (referred to as a particle) searches the global 22 

optimum in a multidimensional search-space considering the personal and collective past 23 

experiences. The algorithm is highly efficient and has been applied to a vast collection of case 24 

studies (see, e.g., (Poli, 2008). (Zambrano-Bigiarini and Rojas, 2013) validated hydroPSO against 25 
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standard global optimisation algorithms such as the Shuffled Complex Evolution Algorithm 1 

(SCE-UA) (Duan et al., 1993), DiffeRential Evolution Adaptive Metropolis (DREAM) (Vrugt et 2 

al., 2009), and Standard PSO 2011 (SPSO-2011) (Clerc, 2012), finding an outstanding 3 

performance of hydroPSO in terms of efficiency, effectiveness and scalability for a set of 4 

benchmarking functions.  On the basis of these results, the hydroPSO was selected as the 5 

calibration engine for this study. For a detailed description of hydroPSO the reader is referred to 6 

(Zambrano-Bigiarini and Rojas, 2013). 7 

 8 

The selection of model parameters to be calibrated is listed in Table 3, including their respective 9 

physically-reasonable ranges. The performance of each particle was assessed using a modified 10 

version of the Kling-Gupta Efficiency (Gupta et al., 2009) (see Section 3.2.4.).  11 

 12 

Comparing the hydrological performance of each SRFE obtained with the BLP (Step 2) against 13 

the one obtained after SRFE-specific calibration (Step 3), will provide insight on how important a 14 

SRFE-specific calibration is. 15 

(insert Table 3 here) 16 

3.2.3. Bias-correction 17 

To assess the influence of bias correction on the hydrological performance two different bias-18 

correction methods, namely factor correction (FC) and histogram equalization (HE), were tested.  19 

 20 

The FC method refers to a rescaling of precipitation based on a multiplier. This multiplier is 21 

calculated for each calendar month during the wet season (here: April - October) only if a 22 

tendency of either over- or underestimation is prevailing for that respective calendar month. A 23 

tendency is prevailing if, when comparing the monthly accumulations of the ground observation 24 

with those of the respective SRFE pixel, at least 75% of these values show the same sign of over- 25 



 14 

or underestimation. In this case, a monthly correction factor ( ,SRFE mon
F ) is computed for the 1 

whole study area as: 2 
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 4 
where obsP  and SRFEP  are, respectively, the monthly precipitation of the ground observation and 5 

the corresponding pixel of the SRFE at the location of the ground observation station i , and n  is 6 

the number of ground stations being considered (only stations with complete data coverage for 7 

that respective calendar month are considered). The resulting multiplier ( ,SRFE mon
F ) is then 8 

applied on each daily SRFE map of the particular month.  9 

 10 

The HE is a recent bias correction method used to correct precipitation estimates from climate 11 

models (Krajewski and Smith, 1991; Piani et al., 2010). The idea behind this method is the 12 

derivation of a “transfer function” (TF) that maps the histogram of the SRFE to match the 13 

histogram of the observations. This transfer function is calculated for each raster cell of the SRFE 14 

and for each calendar month, hence for each raster cell of the SRFE a corresponding observation 15 

is required. Two different methods were applied to interpolate the observations: Inverse Distance 16 

Weighted (Burrough and McDonnell, 1998) and Kriging with External Drift (Goovaerts, 2000). 17 

Depending on which spatial interpolation method was used to grid the observations, the bias-18 

correction method is referred to as HE-IDW or HE-KED. 19 

 20 

Comparing FC against HE gives the impact of the bias-correction method on the hydrological 21 

performance, while comparing HE-IDW against HE-KED gives the impact of the spatial 22 

interpolation method. The aim of this particular analysis is to assess whether using more 23 

sophisticated approaches (HE in general, but also specifically HE-KED) provides an 24 
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improvement of hydrological performance that compensates the computational and human 1 

effort required, or if using simpler approaches (FC or HE-IDW) can result in comparable or 2 

even better hydrological performances. This analysis will provide insight on what bias-correction 3 

method can be pursued, as well as what level of complexity is required to perform the spatial 4 

interpolation of the reference field for obtaining acceptable hydrological performances. 5 

3.2.4.  Performance indicator 6 

The model performance during calibration was assessed using the modified Kling-Gupta 7 

Efficiency (KGE’) (Kling et al., 2012). The KGE’ is a recent performance indicator based on the 8 

equal weighting of three sub-components: linear correlation (r), bias ratio (β) and variability (γ), 9 

between simulated (s) and observed (o) discharge. KGE’ is defined as follows: 10 

( ) ( ) ( )222 1111' −+−+−−= γβrKGE       eq. (2a) 11 
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where r is the Pearson product-moment correlation coefficient, µ is the mean discharge [m³/s], 14 

CV is the coefficient of variation and σ is the standard deviation of the discharge [m³/s]. KGE’, r, 15 

β and γ are dimensionless and their optimum is at unity. The actual value of KGE’ gives the lower 16 

limit of any of the three sub-components.  17 

 18 

According to Kling (personal communication, 2012) the hydrological performance can be 19 

classified using KGE’ as following: 20 

• good (KGE’ ≥ 0.75), 21 

• intermediate (0.75 > KGE’ ≥ 0.5), 22 

• poor (0.5 > KGE’ > 0.0) and 23 



 16 

• very poor (KGE’ ≤ 0.0). 1 

 2 

For the actual analysis of the hydrological performance not only the KGE’ value is taken into 3 

account, but also its three sub-components (r, β and γ) as they provide an excellent opportunity to 4 

elucidate the causes behind a non-optimal model performance. A mismatch of timing and shape 5 

of the hydrograph, for example, is reflected by a low value of the linear correlation coefficient (r), 6 

while a poor mass balance and a poor variability of daily discharge are expressed by bias (β) and 7 

variability (γ) ratios very different from unity, respectively. 8 

 9 

Besides the benefit of explicitly discriminating between these three sub-components (r, β and γ), 10 

using KGE’ as objective function during calibration has been demonstrated to improve the bias 11 

and variability ratio considerably, while the correlation coefficient is only slightly decreased, 12 

compared to the often-used Nash Sutcliffe Efficiency (NSE). Moreover, NSE has shown the 13 

tendency to underestimate the variability of flows and exhibit less efficiency in constraining the 14 

bias ratio (Gupta et al., 2009). For a full discussion of the advantages of using KGE’ over NSE 15 

we refer the reader to (Gupta et al., 2009). 16 

3.3.  High- and low-flow conditions  17 

While for some hydrological applications, SRFE that result in a moderate to good hydrological 18 

performance throughout the year are sufficient, there exist some applications that require a 19 

particular high performance for a certain flow condition. Flood forecasting or inundation 20 

modelling, for example, require a high accuracy during high-flow period, while other applications 21 

such as drought or environmental flow modelling require a high accuracy during low-flow 22 

seasons. Therefore, we analyse the hydrological performance during low- and high-flow 23 

conditions separately.  24 

 25 
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The distinction between high- and low-flow season is done through baseflow separation on the 1 

observed time series following the automated digital filter approach by (Arnold and Allen, 1999), 2 

in which baseflow ( )tb  is calculated as: 3 
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Where tQ is the original streamflow, q is the filtered surface runoff and t  the time step. In this 5 

approach, time periods in which the discharge consists almost exclusively of baseflow correspond 6 

to the low-flow season, whereas the remaining time periods correspond to the high-flow season. 7 

Once the time periods of the high- and low-flow seasons were identified, they were used to 8 

separate the hydrological simulations of Steps 1 and 5 into high-flow and low-flow periods and 9 

then analysed individually. The objective of this particular analysis is to get a better 10 

understanding of the hydrological performance during different flow conditions as well as to 11 

identify which SRFE shows a superior performance during a particular flow condition and 12 

topographic feature. 13 

4. Results 14 

4.1. Reference performance 15 

Figure 5 shows the hydrological performance of each SRFE when LISFLOOD is run with its 16 

base-line parameters (BLP). These results serve as benchmark in order to estimate the impact of 17 

SRFE-specific calibration and bias correction at a later stage. 18 

 19 

Considering the classification of hydrological performance described in section 3.2.4, different 20 

tendencies are observed for lowland (B, N & S) and mountainous (G) catchments. Over the 21 

lowland areas the hydrological performance is quite diverse depending on the SRFE: it is good to 22 

intermediate using RFE 2.0 and TRMM-3B42, poor using ERA-Interim, and very poor for 23 
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CMORPH and PERSIANN. Over the mountainous catchment, however, almost all SRFE show a 1 

poor performance, with only CMORPH being slightly better. 2 

 3 

The three components of KGE’ (r, β and γ) are useful to identify the source of the performance 4 

flaws. Most of the poor and very poor performances observed are due to large deviations of β and 5 

γ from their optimum, which indicate a poor agreement in the mass balance and distributional 6 

shape, respectively. At the same time, r (representing the temporal dynamic and shape of the 7 

hydrograph) is in almost all cases the component comparatively closest to unity. From Figure 5, it 8 

appears that the very poor performances of CMORPH and PERSIANN have a large bias ratio 9 

(β>2) and most of them a small variability (γ<1), indicating large overestimation of mass balance 10 

and less flow variability, respectively. Poor performances, on the contrary, show mostly an 11 

underestimation of discharges (β close to 0). These results are in full agreement with the findings 12 

about the bias ratio of the raw SRFE shown in (Thiemig et al., 2012). 13 

(insert Figure 5 here) 14 

4.2. The influence of calibration, bias correction and both combined on the 15 

hydrological performance 16 

Figure 6 presents the influence on the hydrological performance considering SRFE-specific 17 

calibration, bias correction and both combined. We should note that the middle and right-hand 18 

columns only show the best performance, irrespectively of the bias-correction method employed, 19 

and that the dot size quantifies the change in performance compared to the reference runs (BLP) 20 

shown in Figure 5. In other words, the smaller the dot size, the smaller the effect of the particular 21 

process (SRFE-specific calibration or bias correction). Hence, in this case, the values (colors) will 22 

be similar to the ones of the reference performance. 23 

 24 
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Results after SRFE-specific calibration (left-hand column) show that the hydrological 1 

performance was improved in all the cases, with the best KGE’ values for SRFE that initially 2 

showed a good performance (RFE 2.0 and TRMM-3B42, Figure 5), and the lowest performance 3 

for products with an initially poor or very poor performance. Nevertheless, the absolute 4 

improvement is larger for SRFE with an initially poor or very poor performance than for those 5 

with an initially good performance. Considering the three sub-components, SRFE-specific 6 

calibration produced the largest improvement for the bias ratio (β), while the improvement of the 7 

variability of flow (γ) and of the timing and shape of the hydrograph (r) were negligible. 8 

However, even though the SRFE-specific calibration reduced the bias ratio largely, it is not 9 

capable of correcting the mass balance perfectly (β not approximating unity) for SRFE that are 10 

afflicted with large biases in their intrinsic data quality (see β in Figure 5). Products with an 11 

initially good or intermediate performance such as RFE 2.0 and TRMM-3B42 (over lowlands), 12 

approximate after SRFE-specific calibration their feasible hydrological optimal performance (i.e. 13 

KGE’ close to 1). 14 

 15 

The bias correction (middle column) has, as the SRFE-specific calibration, a large impact on the 16 

bias ratio (β) and a rather negligible impact on the variability of flow (γ) as well as on the timing 17 

and shape of the hydrograph (r). Consequently, the bias correction improved the hydrological 18 

performance in almost all the cases, with the largest improvement for SRFE with an initially poor 19 

or very poor hydrological performance, due to their large bias ratio (β diverging largely from 1), 20 

namely CMORPH, PERSIANN and ERA-Interim over the lowlands and all SRFE (except 21 

CMORPH) over the mountains. On the contrary, the influence of bias correction is negligible for 22 

an initially good or intermediate-performing product (e.g. RFE 2.0 and TRMM-3B42 over 23 

lowlands), which can clearly be seen by the size and color of the dots of the β component. For 24 

some of these products, even though the effect of bias correction is small, the variability (γ) of the 25 

hydrological performance is slightly worsened (underestimated) over Nawuni (TRMM-3B42) and 26 
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Saboba (RFE 2.0, TRMM-3B42 and ERA-Interim) after bias correction. An in-depth analysis has 1 

shown that in all of these cases the HE was used as bias-correction method. Previous research on 2 

the HE has shown two issues that might explain the worsening of the variability: first, the 3 

underestimation of the lower and higher end of the bias-corrected PDFs of precipitation estimates 4 

(Rojas et al., 2011) and (Dosio et al., 2012), and second, the presence of numerical artifacts 5 

coming from the derivation of the TF by using Ordinary Least Squares (OLS) fitting (Piani et al., 6 

2010). 7 

 8 

Overall, the best hydrological performances are obtained if the hydrological model is calibrated 9 

using the bias-corrected SRFE (right-hand column), with all three sub-components (r, β and γ) 10 

showing an average close to 1 for all catchments and an average KGE’ of 0.87, 0.84, 0.9 and 0.88 11 

for Bui, Nawuni, Saboba and Gambella, respectively. Considering the classification in section 12 

3.2.4, most of the products result into a good hydrological performance after applying the 13 

workflow described in Section 3.1.  14 

 15 

Considering the impact of SRFE-specific calibration and bias correction of SRFE on the 16 

hydrological performance, the evaluation has shown that both improved the initial performance 17 

obtained with BLP, mostly by reducing the bias ratio component of the KGE’. However, the 18 

impact of bias correction is larger than that of SRFE-specific calibration for initially (Step 2) poor 19 

and very poor performing products, and vice versa for initially good and intermediate performing 20 

products.   21 

(insert Figure 6 here) 22 

4.3. The most convenient bias-correction approach 23 

Figure 7 shows the hydrological performance for the three different versions of bias-corrected 24 

SRFE (FC, HE-IWD, HE-KED) for each sub-catchment. It is worth noting two aspects: 1) the 25 
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“NA” indication for RFE 2.0 and TRMM-3B42 are due to the fact that both products are quite 1 

close to the observations over the lowland catchments and thus they do not fulfill the 2 

prerequisites for the calculation of the correction factor as stated in Section 3.2.3; and 2) the 3 

general effect of bias correction on r, β and γ as already discussed in Section 4.2 will not be 4 

repeated, unless it contributes to the distinction among the different bias-correction approaches.  5 

  6 

Results show that the choice of bias-correction method has a substantial effect for all catchments. 7 

Considering the classification of the hydrological performance, it is clear that using a more 8 

sophisticated bias-correction method (HE) results into a better hydrological performance in all 9 

sub-catchments. This is mostly due to the reduction of the bias ratio (β), which is considerably 10 

better reproduced using HE rather than FC. The fact that the variability of flow (γ) shows also a 11 

different pattern for FC and HE over the lowlands (B, N & S), with FC overestimating (γ>1) and 12 

HE underestimating (γ<1), is not decisive, as none of the methods outperforms the other. The 13 

timing and shape of the hydrograph (r) plays a negligible role as it is the same for both bias-14 

correction methods.  15 

 16 

The choice of the spatial interpolation field, on the contrary, appears rather subsidiary since the 17 

differences in hydrological performance are small. For lowland catchments (B, N & S) this might 18 

even be applicable as both interpolation fields lead to similar performances considering KGE’, 19 

with the only difference being that HE-IDW shows a tendency to underestimation and HE-KED 20 

to overestimation. However, over the mountainous catchment (G) those small differences move 21 

within a range that is hydrologically highly relevant, i.e. within the transition from intermediate to 22 

good hydrological performance. In this catchment, all four statistical measures (KGE’, r, β, and γ) 23 

show higher scores for HE-KED than for HE-IDW. For example, KGE’ is on average 0.85 and 24 

0.77 for HE-KED and HE-IDW, respectively, while β ranges between 0.9-1.07 and 0.84-0.92. 25 

This might be partially explained by the fact that using high-resolution terrain elevation 26 
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information as auxiliary data might improve the spatial interpolation of precipitation in 1 

mountainous areas. Hence, we could hypothesize that the more sophisticated the spatial 2 

interpolation method, the better the hydrological performance.  3 

 4 

In summary and with regard to the bias-correction method, the HE results generally in a superior 5 

hydrological performance, while the more sophisticated interpolation algorithm (KED) seems to 6 

be of added value only over mountainous regions. 7 

(insert Figure 7 here) 8 

4.4. The performance of SRFE during high-flow and low-flow seasons 9 

Figure 8 shows the hydrological performance during high-flow and low-flow season when both 10 

SRFE-specific calibration and bias correction (HE-KED) are used. In general, the hydrological 11 

performance is better during the high-flow season than during the low-flow season. During high-12 

flow season almost all SRFE achieve a good hydrological performance over all the sub-13 

catchments, with exception of TRMM-3B42 over the mountainous area (G) and PERSIANN over 14 

most of the lowlands (B, N & S), which hold an intermediate performance. The limiting factor of 15 

the slightly poorer performances is due to a weak correlation, meaning that the timing and shape 16 

of the hydrograph are not properly reproduced, which was clearly visible by inspecting the 17 

corresponding hydrographs (not included here). The hydrographs showed diverse tendencies such 18 

as over- or underestimation as well as delayed or early onset of the high-flow season depending 19 

on the individual year being considered. Regarding TRMM-3B42 this is in full agreement with 20 

the findings of (Bitew and Gebremichael, 2011), who observed likewise an inconsistent model 21 

performance of TRMM-3B42 over mountainous areas. 22 

 23 

The performance during low-flow season is very different over lowland and mountainous 24 

catchments; with a mostly good performance over the mountains (G) and poor performance over 25 
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the lowlands (B, N & S). The poor to very poor performances show deficits in all three sub-1 

components, with the mismatch in variability (γ) between observed and simulated discharge being 2 

the most pronounced. Recalling that we are looking here at hydrological simulations that result 3 

from using the hydrological model with bias-corrected SRFE, it can be reasonably assumed that 4 

the mismatch originates mainly from the standard deviation (σ), as the differences in mean 5 

discharge (µ) between simulated and observed discharge are presumably less pronounced after 6 

bias-correction. Hence, the mismatch in variability (γ) arises mainly from differences in the 7 

deviation from the mean behavior of the hydrograph.  8 

 9 

The superior hydrological performance during high-flow compared to low-flow conditions (over 10 

lowland catchments), combined with the fact that the hydrological performance obtained using 11 

SRFE and interpolated observations are similar to each other, indicates that the hydrological 12 

model is better suited to flood forecasting or other applications focused on high-flow conditions 13 

for the studied areas. Poor performance during low-flow conditions might be attributed to model 14 

deficiencies or an improper performance indicator used during calibration. Analysis of these 15 

issues, however, is beyond the scope of this article. 16 

(insert Figure 8 here) 17 

4.5. Validation 18 

Figure 9 shows the hydrological performance during an independent 2-year validation period 19 

(2007-2008; 2006 as warm-up) when both SRFE-specific calibration and bias correction (HE-20 

KED) are used. Note that the hydrological performance using KED interpolated observed 21 

precipitation is not included due to a lack of observed precipitation data during this time period. 22 

The classification of hydrological performance shows a general decline of performance compared 23 

to the results achieved during calibration. Product-wise, RFE 2.0 maintains a good performance, 24 

CMORPH and PERSIANN decrease slightly to an intermediate performance, while TRMM-25 
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3B42 and ERA-Interim show heterogeneous performances over the different sub-catchments. 1 

Considering the sub-catchments individually, no particular tendency can be seen.  2 

 3 

The decline in performance is mainly due to deviations of β from its optimum. The reason for this 4 

might be related to the length of the time period used for deriving the bias-corrected fields. The 5 

bias-correction approach used here (HE) is based on the derivation of a transfer function (TF), 6 

which is then assumed to be valid for a different target period. In our case, the TF has been 7 

derived for the time period 2003-2006 and then applied to the period 2003-2008. Hence, the time 8 

period for the derivation of TF may be too short for computing a reliable transfer function and the 9 

validation period has not been used for the construction of the TF and thus might not be perfectly 10 

fitting. Hence, our assumption of stationarity, meaning that the TF and its associated parameters 11 

are also valid during the application period might not hold, and consequently it would be 12 

advisable to use longer time periods for obtaining more robust TFs. However, considering the 13 

data availability, this was the best possible approach. Considering TRMM-3B42, another reason 14 

might explain the deviation of β from its optimum. Version 6 uses two different gauge analyses 15 

namely GPCC and CAMS (at different times) to correct the monthly bias. Using CAMS (since 16 

May 2005) has shown to be deficient in some regions and hence might explain the heterogeneous 17 

performance. 18 

 19 

Periodic updating of the calibration and bias correction when new data become available may 20 

compensate the decline in hydrological performance when the hydrological model is used in a 21 

time period different from the one used for the calibration and derivation of the transfer function. 22 

(insert Figure 9 here) 23 
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5. Discussion and Conclusion 1 

The usefulness of satellite-derived rainfall estimates (SRFE) as forcing data for hydrological 2 

applications was investigated here. Four SRFE (CMORPH, RFE 2.0, TRMM-3B42 and 3 

PERSIANN) and one re-analysis product (ERA-Interim) were evaluated over two African river 4 

basins (Volta and Baro-Akobo), both holding distinct climatic, physiographic and hydrologic 5 

characteristics. We aimed at addressing three research questions:  How useful are these SRFE as 6 

forcing data for hydrological modelling? Which SRFE should be favoured for hydrological 7 

modelling? What could researchers do to increase the performance of SRFE-driven hydrological 8 

simulations? Within this context we assessed a) the individual and combined effect of SRFE-9 

specific calibration and bias correction on the hydrological performance, b) the level of 10 

complexity required regarding bias-correction and spatial interpolation methods to achieve a good 11 

hydrological performance, and c) the performance of SRFE during high- and low-flow 12 

conditions.  13 

5.1. Answers to key research questions 14 

How useful are these SRFE as forcing data for hydrological modelling? 15 

Results from the hydrological evaluation make clear that the selected SRFE have a good potential 16 

to be used as input data source for hydrological modeling. This is mainly due to two facts: a) 17 

most of the SRFE achieve a good hydrological performance over most of the climatic and 18 

geomorphologic conditions analysed, when SRFE-specific calibration and/or bias correction are 19 

used to (partially) compensate for intrinsic data quality flaws of the SRFE; and b) that the 20 

hydrological performance obtained using SRFE and interpolated observations as forcing data for 21 

the hydrological model are after calibration similar to each other.  This outcome is highly 22 

desirable, especially for data-sparse and ungauged basins. 23 

 24 

Which SRFE should be favoured for hydrological modelling? 25 
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Generally, the SRFE that requires the least effort for a good hydrological performance is the 1 

desirable one. Hence, the one that has a good intrinsic data quality and does not need to be bias-2 

corrected prior to model application. However, as the quality of the SRFE is not homogeneous 3 

over different climatologic and geomorphologic conditions, there is no straightforward 4 

recommendation for a specific SRFE to use. The user has to consider the intrinsic data quality of 5 

the SRFE for the specific target area, either through ground truthing or by running the 6 

hydrological model with some parameterisation based on expert knowledge (here: BLP), and, 7 

finally, select the most accurate from the start. In our case, the selection would be RFE 2.0 and 8 

TRMM-3B42 for Volta (lowlands) and CMORPH for Baro-Akobo (mountains). After selection 9 

of the SRFE the user can consider further measures to increase the hydrological performance (see 10 

next point).  11 

 12 

What could researchers do to increase the performance of SRFE-driven hydrological 13 

simulations?  14 

From the evaluation of the results, a number of recommendations can be given to increase the 15 

hydrological performance. Figure 10, which shows the observed and simulated hydrographs (of 16 

Step 1 to Step 5) for CMORPH and RFE 2.0 for the two study areas, provides the context for the 17 

following recommendations: 18 

(insert Figure 10 here) 19 

 20 

1) Prior to any further measures to improve the hydrological performance, the intrinsic data 21 

quality of the selected SRFE needs to be assessed, either through ground truthing or by running 22 

the hydrological model with a  parameterization based on expert knowledge (here: BLP). In the 23 

latter case, a good to intermediate hydrological performance indicates a good intrinsic data 24 

quality of the SRFE, while a poor to very poor performance indicates the presence of quality 25 

flaws within the SRFE. Figure 10 suggests quality flaws of CMORPH over lowlands and RFE 2.0 26 
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over mountainous areas while the data quality seems to be high for CMORPH over mountainous 1 

areas and RFE 2.0 over lowlands.   2 

 3 

2) If a certain SRFE has a good intrinsic data quality, then only SRFE-specific calibration is 4 

recommended. Additional bias correction does not produce a significant improvement to the 5 

performance achieved after calibration (Figure 10, panel c). 6 

 7 

3) If, on the contrary, a given SRFE shows a quality flaw during ground truthing (usually bias), 8 

then applying a bias correction to the SRFE prior to SRFE-specific calibration is essential to 9 

obtaining a good hydrological performance (Figure 10, panels a and d).  10 

 11 

4) Regarding the selection of the bias-correction method, the more sophisticated approach 12 

(histogram equalization) results generally in a superior hydrological performance than when 13 

using a simpler method (factor correction). Whereas for the spatial interpolation algorithm, the 14 

more sophisticated interpolation (Kriging with External Drift) seems to be of added value only 15 

over mountainous regions, as the improvement is within a range that is hydrologically highly 16 

relevant and hence justifies the larger workload during the interpolation phase (see Figure 11). 17 

 18 

Bias correction should be applied to SRFE that are afflicted with biases for two reasons: first, it 19 

appears more sensible to correct the forcing data that produces, due to its data quality flaw, a 20 

systematic over- or underestimation of discharge, rather than distorting the calibration parameters 21 

beyond commensurability to force the model to reproduce the observed hydrological pattern. 22 

Secondly, the hydrological evaluation shows that bias correction reduces the bias more 23 

effectively than SRFE-specific calibration.  24 

 25 
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Applying SRFE-specific calibration is in any case a general recommendation, as it always leads 1 

to an improved hydrological performance compared to a hydrological model that has been 2 

calibrated to interpolated observations and then forced with SRFE. This has also been shown in 3 

previous studies by e.g. (Bitew and Gebremichael, 2011) and (Stisen and Sandholt, 2010). 4 

5.2. Further issues 5 

Previous studies suggest a relationship between the nature of the SRFE (i.e. the main type of data 6 

source (IR, PMW) as well as the presence of ground observations) and the quality of the 7 

hydrological performance. This study has shown a weaker hydrological performance over the 8 

lowland catchments (B, N & S) for those SRFE that do not ingest any ground observations 9 

(CMORPH and PERSIANN), which is in agreement with the findings of (Behrangi et al., 2011). 10 

Knowing that only a minor percentage of the ground observations used for the hydrological 11 

evaluation are publically available (ca. 21 %; see Section 2.2.1), and hence used by RFE 2.0 and 12 

TRMM-3B42 to adjust their estimates quantitatively, we could argue that a small number of 13 

ground observations might have the potential to improve the intrinsic data quality of the SRFE 14 

substantially, and as a result also improve the hydrological performance. The fact that the same 15 

tendency is not shown over the mountainous catchment (G) might suggest that the available data 16 

density might not be sufficient, considering the complex topography, and hence do not favour 17 

SRFE that incorporate ground observations. For those areas, SRFE that ingest primarily PMW 18 

(here CMORPH) show a consistent and better performance, which was also observed by (Bitew 19 

and Gebremichael, 2011), and suggest that over complex topographies the higher accuracy of the 20 

PMW is more important than the high spatio-temporal resolution of the IR.  21 

 22 

Lastly, the choice of the performance indicator (KGE’) might be questioned due to the fact that it 23 

has not yet been widely applied in hydrology, hence it might be unfavorable to the audience that 24 

cannot draw upon past experiences. However, due to its powerful nature, originating from an 25 
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equal, independent and simultaneous consideration of bias ratio, variability ratio and linear 1 

correlation, KGE’ has an enormous potential over more conventional indicators (e.g. Nash-2 

Sutcliffe Efficiency or RMSE). Calibrating upon KGE’ resembles a multi-objective calibration, 3 

optimising simultaneously several attributes of the hydrological performance. Furthermore, using 4 

KGE’ during the evaluation phase provides valuable insight into the hydrological performance. 5 

Knowing the origin of the performance flaws gives the opportunity to address those separately to 6 

further increase the performance. 7 

5.3. Final implications 8 

As a result of the hydrological evaluation, SRFE showed significant potential as forcing data to 9 

hydrological applications focusing on high-flow conditions (such as dam storage capacity 10 

calculations or flood management) for the areas under study. SRFE are also useful for general 11 

water budget calculations and similar applications, as the general performance was good. 12 

However, for our study areas, the use of SRFE are not advisable for hydrological applications 13 

focusing solely on the reproduction of low-flow conditions, as the hydrological performance for 14 

these conditions was poor. This, however, does not preclude that SRFE could be used for 15 

meteorological drought monitoring.  16 

 17 

The cause for the poor hydrological performance during low-flow conditions is not entirely clear, 18 

as the sub-components of KGE’ indicate various flaws. However, the fact that the hydrological 19 

simulations driven by interpolated ground observations show similar flaws suggests that the 20 

hydrological model might not be capable of reproducing low-flow conditions. The latter could be 21 

explained by a poor model structure or by the performance indicator chosen during calibration, 22 

which optimises the hydrological simulation from a number of perspectives, but with no 23 

particular emphasis on the low-flow spectrum. Given this uncertainty, it is presently not possible 24 

to indicate a potential applicability of SRFE for applications focusing on low-flow conditions, 25 
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although this is open for future research. One approach might be to repeat the calibration with a 1 

performance indicator that concentrates predominantly on the low-flow conditions such as the 2 

Heteroscedastic Maximum Likelihood Error (HMLE) (Sorooshian and Dracup, 1980).  3 

Acronyms 4 

AMSR-E Advanced Microwave Scanning Radiometer 5 

AMSU  Advanced Microwave Sounding Unit 6 

BLP  “base-line parameterisation” 7 

β  bias ratio 8 

CAMS  Climate Anomaly Monitoring System 9 

FC  factor correction 10 

GPCP  Global Precipitation Climatology Project 11 

GTS  Global Telecommunication System 12 

HE  histogram equalization 13 

HMLE  Heteroscedastic Maximum Likelihood Error 14 

IDW  inverse distance weighted 15 

γ  variability ratio 16 

KED  Kriging with External Drift 17 

KGE’  modified Kling-Gupta Efficiency 18 

MAE  Mean Absolute Error 19 

NSE  Nash Sutcliffe Efficiency 20 

OLS  Ordinary Least Squares 21 

PDF  probability density function 22 

PMW  passive microwave 23 

PSO  Particle Swarm Optimisation 24 

R  linear correlation 25 
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R²  coefficient of determination 1 

RMSE  Root Mean Square Error 2 

SCE-UA Shuffled Complex Evolution Algorithm 3 

SRFE  satellite-based rainfall estimates 4 

SRTM  Shuttle Radar Topography Mission 5 

SSM/I  Spatial Sensor Microwave/ Imager on board 6 

TCI  TRMM Combined Instrument 7 

TIR  thermal infrared 8 

TF  “transfer function” 9 

TMI  Advanced Microwave Sounding Radiometer on board the TRMM spacecraft 10 

TRMM  Tropical Rainfall Measuring Mission 11 

VarBC  variational bias correction 12 

 13 
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Table 1: Topographic and climatic characteristics of the study areas 1 

river system Volta Nile 
topographic information 

sub-catchment Black Volta White Volta Oti Baro-Akobo 
reference 
gauging station 

Bui Nawuni Saboba Gambella 

data provider Geoportal of Volta Basin Authority Ethiopian 
Ministry of 
Water and 
Energy 

drainage area 
[km²] 

130 000 100 000  53 000 76 000 

altitude (min / 
max / average) 
[m ASL] 

60 / 762 / 287 60 / 530 / 270 40 / 920 / 245 400 / 3100 / 1677 

average slope [°], 
[m/km] 

0.7, 12 0.6, 11 0.9, 16 4.4, 77 

climatic information 

mean annual 
precipitation 
[mm] 

1033 964 
 

1155 2009 

no. of 
meteorological 
stations 

68 14 

station density 
[km²/ station] 

8800 12 700 

data provider Geoportal of Volta Basin Authority Ethiopian 
National 
Meteorology 
Agency 

 2 

 3 
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Table 2: Description of the selected SRFE including outcome of the ground truthing phase (Thiemig et al., 2012) 1 

 CMORPH RFE 2.0 TRMM 3B42 v6 PERSIANN ERA-Interim 
Provider NOAA-CPC NOAA-CPC NASA University of 

California, Irvine 
ECMWF 

Spatial coverage 60°N to 60° S, 
globally 

40° N - 40° S, 20° W 
- 55°E 

50°N to 50° S, 
globally 

60°N to 60° S, 
globally 

Global 

Temporal coverage Since 06.12.2002 Since 01.01.2001 Since 01.01.1998 Since 01.03.2000 Since 01.01.1989 
Spatial resolution 0.25° 0.1° 0.25° 0.25° ~ 79 km 
Temporal resolution 3 h 24 h 3 h 6 h 6 h 
main product data 
sources 

Geostationary IR, 
SSM/I, AMSU, 
AMSR-E, TMI 

Geostationary IR, 
SSM-I, AMSU-B and 
GTS stations 

Geostationary IR, 
TCI, SSM/I, AMSU, 
CAMS and  GPCP 

Geostationary IR, 
TRMM 2A12, SSM/I 
and AMSU 

4D-Var, VarBC 

merging approach Precipitation 
estimates are solely 
based on MW data. 
IR data are only used 
to derive a cloud 
motion field to 
propagate 
precipitation in higher 
spatial and temporal 
resolution. 

Precipitation is firstly 
approximated from 
each individual 
satellite source using 
the ML method, 
decreasing data gaps, 
random errors and 
systematic bias. The 
quantity of this 
approximation is then 
adjusted using GTS 
interpolated rainfall 
fields. 

MW-based 
estimations are 
merged and 
calibrated, and 
subsequently 
combined with IR-
based estimates. The 
combined 
approximation is then 
rescaled using 
monthly CAMS and 
GPCP data. 

A relationship 
between IR and 
precipitation rate is 
established using a 
neural network. The 
network is 
additionally trained 
with MV data. The 
actual precipitation 
estimates are solely 
based on 
instantaneous IR 
observations. 

Precipitation is 
estimated by a 
numerical model 
based on temperature 
and humidity 
information derived 
from assimilated 
observations 
originating from 
PMV data and in-situ 
measurements. 

reference (Joyce et al., 2004) (The NOAA Climate 
Prediction Center, 
2002) 

(Huffman et al., 2007; 
Huffman et al., 2010) 

(Hsu et al., 1997) (Dee et al., 2011) 

main outcome of 
ground truthing phase 
for the selected study 
areas 

• Overestimate the 
amount of 
precipitation 
during wet periods 

• Capture the 
intraseasonal 
variability, the 
spatial distribution 

• Capture the 
intraseasonal 
variability, the 
spatial distribution 

•  Large quantitative 
deviations of 
monthly and 
annual values 

• Persistent 
overestimation of 
light rainfall events 
and 
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(Thiemig et al., 2012) 
(see also Figure 3) 

as well as the 
number of rainy 
days per year 
(Volta) 

• Superior ability to 
reproduce daily, 
monthly and 
annual 
precipitation over 
mountainous areas 
(Baro-Akobo)  

pattern, the 
average annual 
precipitation and 
the timing of the 
highest annual 
precipitation event 
well (Volta) 

• Underestimation of 
precipitation over 
mountainous areas 
(Baro-Akobo) 

pattern, the 
average annual 
precipitation and 
the timing of the 
highest annual 
precipitation event 
well (Volta) 

• Underestimation of 
precipitation over 
mountainous areas 
(Baro-Akobo) 

• Large 
overestimations of 
precipitation 
amount and 
number of rainy 
days; mostly 
during wet season 
(Volta) 

• Underestimation of 
precipitation over 
mountainous areas 
(Baro-Akobo) 

underestimation of 
heavy rainfall 
events 

• Capture 
intraseasonal 
variability and 
spatial distribution 
pattern well 
(Volta) 

• Clear 
overestimation of 
precipitation over 
mountainous areas 
(Baro-Akobo) 

AMSR-E: advanced microwave scanning radiometer; AMSU: advanced microwave sounding unit; CAMS: climate anomaly monitoring system; 1 

GPCP: global precipitation climatology project; GTS: Global Telecommunication System; SSM/I: spatial sensor microwave/ imager on board; 2 

TCI: TRMM combined instrument; TMI: advanced microwave sounding radiometer on board the TRMM spacecraft; TRMM: tropical rainfall 3 

measuring mission; VarBC: variational bias-correction 4 
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Table 3: Calibrated parameters in the LISFLOOD hydrological model 1 

Parameter Description Unit Min Max 
UZTC Time constant for water in upper zone  days 3 40 
LZTC Time constant for water in lower zone  days 50 2500 
GwPV Groundwater percolation value mm/day 0.5 2 
GWLoss Maximum loss rate out of Lower response box, expressed 

as a fraction of lower zone outflow. 
- 0.01 0.35 

b_Xinan Power in Xinanjiang distribution function - 0.01 1 
PPrefFlow Power that controls increase of proportion of preferential 

flow with increased soil moisture storage 
- 0.5 8 

CCM Multiplier applied to Channel Manning's n - 0.1 15 
CCM2 Multiplier applied to Channel Manning's n for second line 

of routing 
- 0.1 15 

CalEvap Multiplier applied to potential evapo(transpi)ration rates - 0.5 2 

 2 
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 1 

Figure 1: Overview of the geographical location, including the terrain elevation, rain gauge and 2 

discharge stations as well as subcatchment delineation for the study areas. 3 

 4 
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 1 

Figure 2: a) observed streamflow and b) quantiles at the reference gauging stations (for location 2 

see Figure 1) 3 

 4 
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 1 

Figure 3: Observed and SRFE-based mean annual precipitation for the reference period 2003-2 

2006. (note both basins are shown on a different spatial scale) 3 

 4 
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 1 

Figure 4: Methodological framework 2 
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 1 

Figure 5: Reference hydrological performance for each SRFE retrieved by running LISFLOOD 2 

with BLP for different catchments 3 

 4 
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 1 

Figure 6: Impact of SRFE-specific calibration (left column), bias correction (middle column) and 2 

both combined (right column) on the hydrological performance [same legend as in Figure 5]. 3 
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 1 

 2 

Figure 7: Impact of different bias-correction methods (FC and HE) and different interpolation 3 

methods (IDW and KED) ingested by HE on the hydrological performance [same legend as in 4 

Figure 5 and Figure 6]. 5 

 6 
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 1 

Figure 8: Hydrological performance during high-flow and low-flow season [same legend as in 2 

Figure 5] 3 

 4 
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 1 

Figure 9: Hydrological performance during the validation period 2007-2008 [same legend as in 2 

Figure 5] 3 
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 1 

Figure 10: Observed and simulated hydrographs (BLP, CAL, BC, CAL + BC) of CMORPH and RFE 2.0 for a lowland and mountainous 2 

catchment during the calibration period 2003-2006. 3 
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 1 

Figure 11: Observed and simulated hydrographs (noBC, FC, HE-IDW and HE-KED) of CMORPH and RFE 2.0 for a lowland and mountainous 2 

catchment during the calibration period 2003-2006. 3 
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